A new classification of sections and series in *Eucalyptus* subg. *Eudesmia* (Myrtaceae)

Michael J. Bayly¹, Todd G.B. McLay¹², David J. Cantrill¹² and Rachael M. Fowler¹

¹ School of BioSciences, The University of Melbourne, Victoria 3010, Australia; e-mails: mbayly@unimelb.edu.au; rachael.fowler@unimelb.edu.au

² Royal Botanic Gardens Victoria, Birdwood Avenue, Melbourne, Victoria 3004, Australia; e-mails: todd.mclay@rbg.vic.gov.au; david.cantrill@rbg.vic.gov.au

Abstract

Keywords: taxonomy, phylogeny, eudesmid, new taxa

Introduction

Here we present a new classification of sections and series in *E*. subg. *Eudesmia* based on recent phylogenomic analyses of McLay *et al.* (2023). That study, based on a dataset of 73 eudesmid samples and sequences of 522 nuclear genes, and a smaller set of plastid genes, provided new insight into eudesmid relationships and resolved some infrageneric taxa, recognised in the recent classifications of Gibbs *et al.* (2009) and Nicolle (2022), as polyphyletic. In particular, in the nuclear phylogeny, *E*. sect. *Complanatae* Brooker, sensu Nicolle (2022) or Gibbs *et al.* (2009), was resolved as polyphyletic because of the placement of *E. tetrodonta*...
F. Muell. with members of E. sect. Limbatae Brooker, and E. ser. Heteropterae Maiden was polyphyletic because E. erythrocorys F. Muell. was placed outside that group. In addition, placement of different accessions of E. gittinsii Brooker & Blaxell in multiple positions in the nuclear tree rendered subser. Tetraedrae Brooker, sensu Gibbs et al. (2009), polyphyletic.

Our new classification for the eudesmids is intentionally phylogenetic, recognising only monophyletic groups, and focusing only on clades resolved in the nuclear phylogeny with robust support; we have not focussed on analyses of plastid DNA, which are frequently discordant with nuclear phylogenies and with classification of eucalypts (McKinnon et al. 1999; Bayly 2016; Schuster et al. 2018; Fahey et al. 2021), including in E. subg. Eudesmia (Mclay et al. 2023). The nuclear DNA analyses of Mclay et al. (2023) identified three main eudesmid clades (labelled by Mclay et al. as Clades A, B and C), which are each recognised here at the rank of section (Figure 1). We recognise robust clades within those groups at the rank of series, largely using existing series names, but establishing new series names for two groups previously recognised at the rank of subseries. We do not use the rank of subseries, names for two groups previously recognised at the rank of section (Figure 1). We recognise robust clades within those groups at the rank of series, largely using existing series names, but establishing new series names for two groups previously recognised at the rank of subseries. Additionally, there is taxonomic and phylogenetic uncertainty (discussed below) in the largest series, E. ser. Heteropterae, and the presence of potentially polyphyletic species hinders the recognition of subseries in that group.

Taxonomy

We recognise the following sections and series in Eucalyptus subg. Eudesmia. The relationship of these taxa to the eudesmid phylogeny of Mclay et al. (2023) is shown in Figure 1.

Eucalyptus sect. Aurantistamineae Bayly & R.Fowler, sect. nov.

Type: Eucalyptus miniata Schauer

Diagnostic description: Distinguished from other sections of Eucalyptus by the combination of: orange staminal filaments; calyx fused to the corolla and evident, in bud, as four small teeth at apex of corolline operculum.
and have equal priority, being simultaneously published in the same work. Here we opt to use the same sect. Limbatae, thus establishing priority under Art. 11.5 of the International Code of Nomenclature for Algae, Fungi and Plants (Turland et al. 2017), because that usage more closely matches circumscriptions used in recent classifications.

Eucalyptus ser. Tetrodonta* Chippend.
_Type: Eucalyptus tetrodonta* F.Muell.
_Included species: E. tetrodonta, E. megasepala* A.R.Bean

Eucalyptus ser. Edentatae* Brooker
_Type and only included species: Eucalyptus gongylocarpa* Blakely

Eucalyptus ser. Jucundae* Chippend.
_Type: Eucalyptus jucunda* C.Gardner
_Included species: E. jucunda, E. roycei* S.G.M.Carr, D.J.Carr & A.S.George

Eucalyptus ser. Erythrocorythosae
_Type and only included species: Eucalyptus erythrocorys* F.Muell.

Eucalyptus ser. Ebbanoenses* Chippend.
_Type and only included species: E. ebbanoensis* Maiden

Eucalyptus ser. Odontocarpace* Chippend.
_Type: E. odontocarpa* F.Muell.
_Included species: E. odontocarpa, E. gamophylla* F.Muell.

Eucalyptus ser. Heteropterae* Maiden
_Lectotype: (designated by Chippendale 1988, p. 498) Eucalyptus tetragona* (R.Br.) F.Muell. [considered an intergrade between E. extrica* D.Nicolle and E. pleurocarpa* Schauer; Nicolle (2000)]

Notes: This is the largest series recognised in this classification. The included species were separated by Gibbs *et al.* (2009) into three subseries (Tetraedrae* Brooker, Pleurocarpa* A.K.Gibbs & Ladiges, and Conveniensae* A.K.Gibbs & Ladiges) of a more broadly defined sect. Heteropterae*, but were included as the only members of a single subseries (Tetraedrae) by Nicolle (2022). They are not divided into subseries here, because of uncertainty about species boundaries and because of low support for some relationships in the group.

Species taxonomy in this group requires attention, and our list of included species is intended to be indicative, rather than making firm assertions about the species that should be recognised. Here, as done by McLay *et al.* (2023), we follow the taxonomy of the Australian Plant Census (CHAH 2023) and Euclid (Slee *et al.* 2006), in including both Eucalyptus selachiana* L.A.S.Johnson & K.D.Hill and E. pallida* L.A.S.Johnson & K.D.Hill, informally, as subspecies under *E. eudesmioides*. An alternative classification is proposed by Slee *et al.* (2020) who recognise *E. selachiana* as distinct, but continue to include *E. pallida* under *E. eudesmioides*. Nicolle (2000) also indicated that *E. pallida* should be included under *E. eudesmioides*, but the list of Nicolle (2022) includes all three species. The nuclear phylogeny (Figure 1) does not resolve these taxa as distinct from each other (or from *E. gittinsii* subsp. *gittinsii*), but support in that part of the tree is low, and we have not investigated the morphology of these taxa in sufficient detail to make firm recommendations on species limits.

Previous discussions of other species in *E. ser. Heteropterae* suggest that introgression is widespread and contributes to difficulties in species delimitation. *Eucalyptus conveniens* is considered, on morphological grounds, to be a stable intergrade between *E. gittinsii* (subsp. *illucida*) and *E. pleurocarpa* (Hill & Johnson 1998; Nicolle 2000, 2022; French & Nicolle 2019), which could be consistent with the positions of those taxa in the nuclear phylogeny. Intergrades are also reported between *E. extrica* and *E. pleurocarpa*, and have morphology matching the type of *E. tetragona*, as indicated by Brooker (2000) and Nicolle (2000). Intergrades between *E. gittinsii* subsp. *illucida* and *E. eudesmioides* were noted by Nicolle (2000); Nicolle & French (2019) also indicated that *E. gittinsii* subsp. *gittinsii* and *E. eudesmioides* sometimes interbreed,
forming populations of plants with intermediate characteristics. The close association of the last two taxa in the nuclear phylogeny (Figure 1), as well as in the plastid phylogeny of McLay et al. (2023), hints at the possibility of a close relationship, if not gene flow between them, but relationships in that part of the tree are not well supported.

Acknowledgements

This study was funded by Eucalypt Australia (grant 2020-12) and The University of Melbourne Botany Foundation. We are grateful to Don Franklin, Bevan Buirchell and directors and staff of The University of Melbourne Herbarium, National Herbarium of Victoria, Northern Territory Herbarium, Australian Tropical Herbarium, and Australian National Herbarium for provision of samples or assistance with fieldwork for the phylogenetic study on which this was based. We also thank Dean Nicolle for advice on classification of E. miniata and E. phoenicea. TGBM was supported by the Pauline Ladiges Postdoctoral Fellowship, jointly funded by the University of Melbourne Botany Foundation and the Royal Botanic Gardens Victoria Foundation.

References

Fahey, P.S., Fowler, R.M., Udovicic, F., Cantrill, D.J. and Bayly, M.J. (2021). Use of plastid genome sequences in phylogeographic studies of single species can be misleading without comprehensive sampling of co-occurring, related species. Tree Genetics and Genomes 17, 43.

Figure 1. New classification of sections and series in *Eucalyptus* subg. *Eudesmia* aligned with a phylogenetic tree produced by McLay et al. (2023). Newly named taxa are indicated by an asterisk. The tree is an ASTRAL phylogeny based on 522 nuclear gene trees. Values on branches represent local posterior probability (LPP); major clades (A, B and C1–C7) identified and discussed by McLay et al. (2023) are also labelled. Species labels are colour-coded; see McLay et al. (2023) for collecting details of each accession (the order of samples in this tree is identical to that in Fig. 2 of McLay et al. 2023).